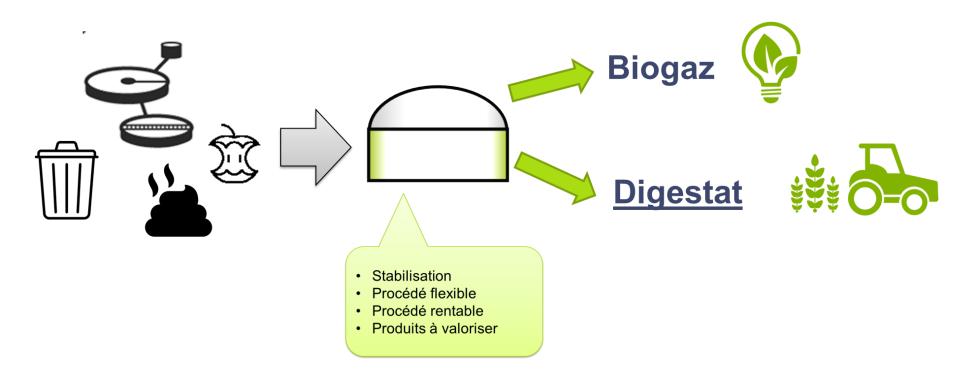
INRAO

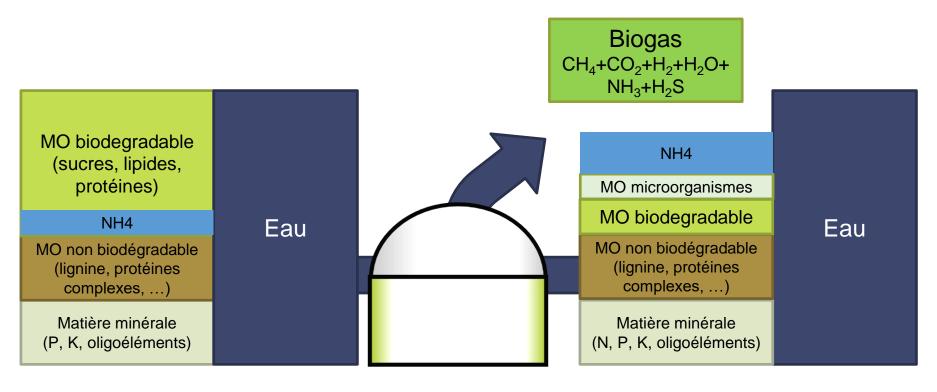

Digestats de méthanisation: typologie en fonction des intrants et réglementation

<u>Julie Jimenez¹</u>, Anne Wallrich², Felipe Guilayn^{1,3}, Denis Ollivier⁴, Dominique Patureau¹, Sabine Houot²

¹INRA UR 0050 Laboratoire de Biotechnologie de l'Environnement, Narbonne ²INRA, UMR ECOSYS, Thiverval Grignon ³CIRSEE, SUEZ, Le Pecq ⁴TRAME, Paris

> Contexte

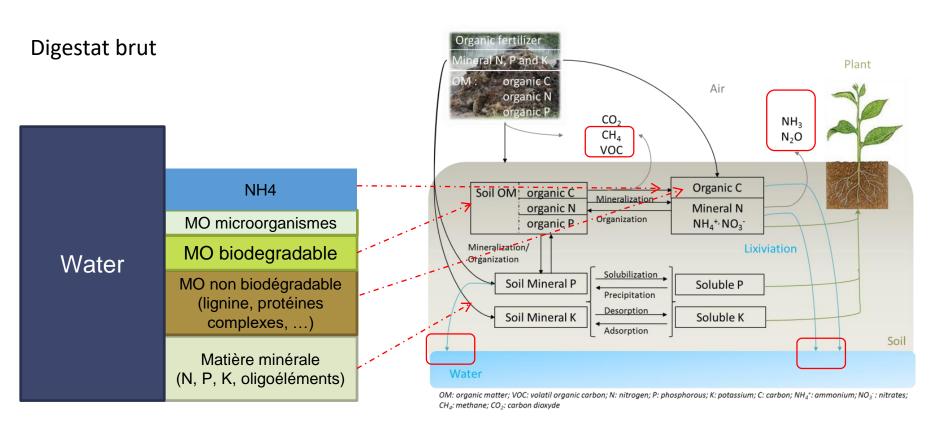
Méthanisation



Participe au **plan EEMA** (Energie Méthanisation Autonomie Azote) de 2013: augmenter l'autonomie en énergie et intrants fertilisants pour les exploitations

> Contexte

Méthanisation



Substrat frais en matière brute

Digestat brut

Contexte

Digestats et besoins des agrosystèmes

Tous les ingrédients sont là.... Quel état? Disponible ou non? Stable ?Toxicité ? Effet environnement?

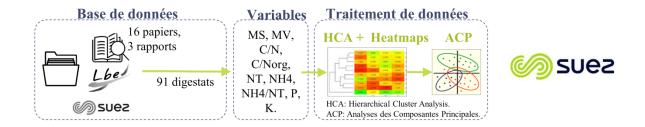
> Contexte

Digestats et variabilités

Challenge du digestat

Pas UN mais DES digestats!

- Produit majoritaire (en masse) issu de la digestion anaérobie (DA)
- Mélange de biomasse microbienne, minéraux et matière organique non digérée



Objectifs de la présentation

Typologies des digestats d'après 2 études

Collaboration avec SUEZ (Thèse CIFRE*) sur l'ensemble des digestats bruts d'origine urbaine + agricole (1)

- Collaboration avec AMMF (projet Concept-Dig, 2019) sur les digestats d'origine agricole (2)
 - Enquête sur 74 sites méthanisation agricole, mêmes variables et méthodes que l'étude (1)
 Ademe
- ❖ Positionnement des digestats vis-à-vis de la réglementation

Etude digestats agricoles et non agricoles 91 digestats bruts

Caractéristiques

MS sur MB

MO sur MS

C total g/kg MS

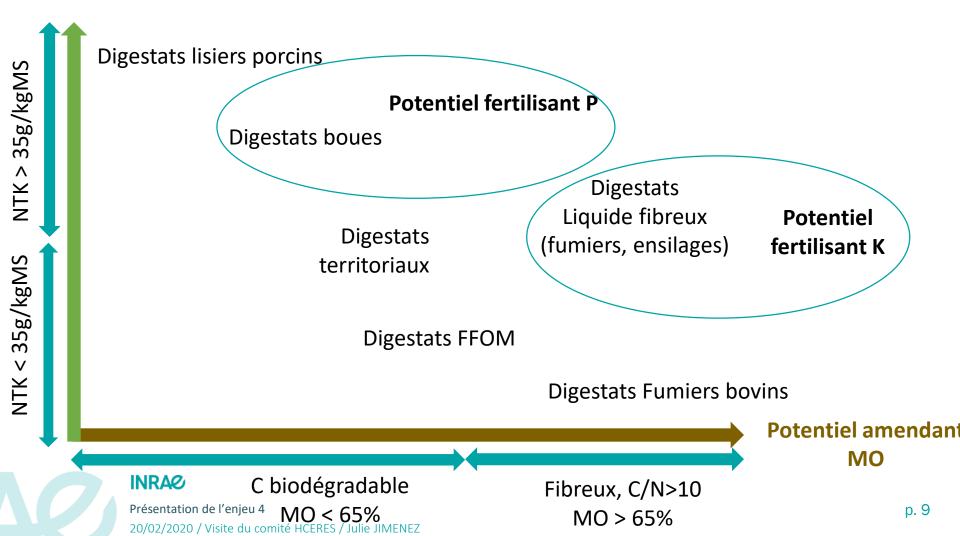
C/N total

C/N organique

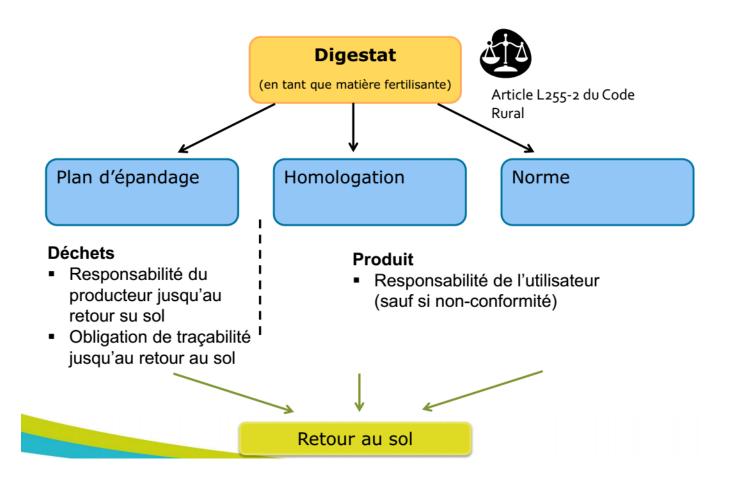
Valeurs fertilisantes

- K₂O g/kg MS
- P_2O_5 g/kg MS
- N total g/kg MS
- NH₄ g/kg MS
- % NH₄ dans N total

Réalisation d'analyses statistiques

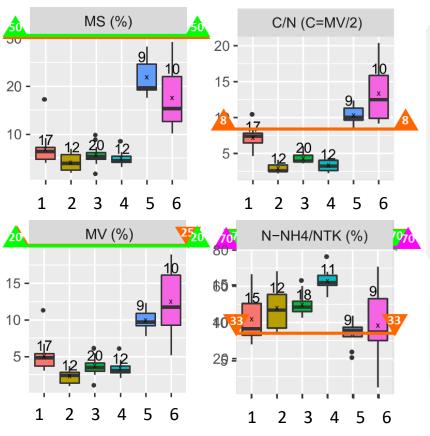

6 Groupes de digestats identifiés selon les intrants associés:

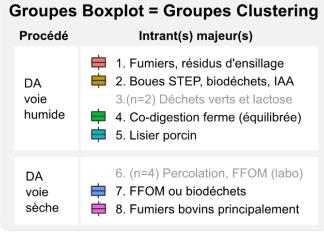
- Voie liquide
 - 1) Fibreux: fumiers, ensilages
 - 2) Boues station d'épuration, biodéchets, industrie agro-alimentaire
 - 3) Territorial: co-digestion « équilibrée »
 - 4) Lisier porcin
- Voie sèche discontinue
 - 5) Fumiers bovins
 - 6) Fractions fermentescibles d'ordures ménagères



Impact sur qualité agronomique

Potentiel fertilisant N

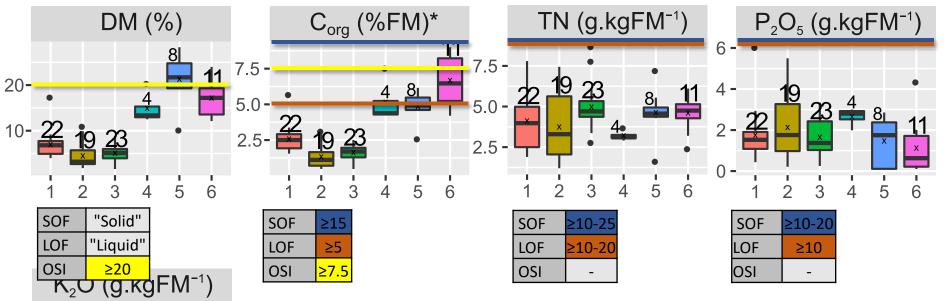



Typologies des digestats bruts vs réglementation

Typologies des digestats bruts vs réglementation

- pas assez secs
 (MS), trop
 minéralisé
 (NH4/TN), pas
 assez organique
 (MV) pour norme
 amendement
 organique
- pas assez NPK
 pour atteindre la
 norme fertilisants

Statut de produit: Post-traitements nécessaires



Typologies des digestats brus vs réglementation

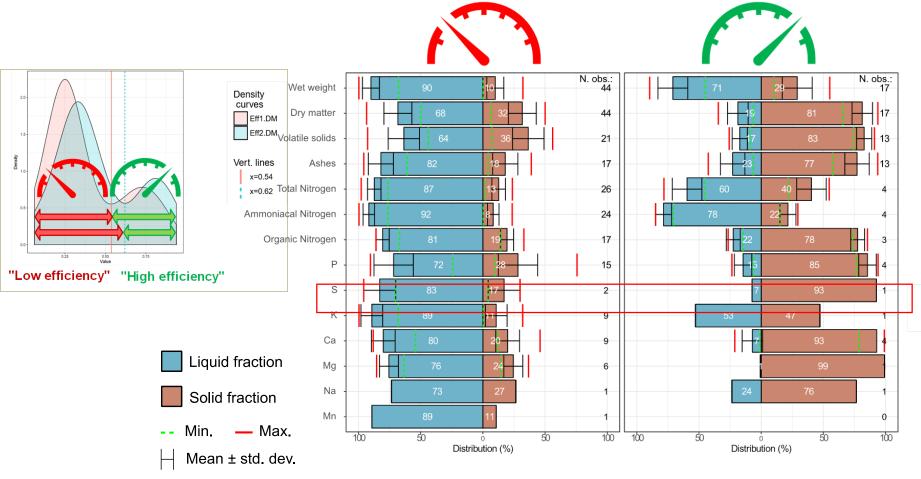
* * *

Digestats vs critères produits (dernier texte EU)

Post-traitements nécessaires!

SOF: Solid Organic Fertilizer LOF: Liquid Organic Fertilizer

OSI: Organic Soil Improver


Présentation de l'enjeu 4 20/02/2020 / Visite du comité HCERES / Julie JIMENEZ

≥10-20

SOF

LOF

Impact séparation de phases: développement indicateur

^{*}Guilayn, F., et al., 2019. Digestate mechanical separation: Efficiency profiles based on anaerobic digestion feedstock and equipment choice. Bioresour. Technol. 274, 180–189.

18 juin 2017

JOURNAL OFFICIEL DE LA RÉPUBLIQUE FRANÇAISE

Texte 13 sur 63

Décrets, arrêtés, circulaires

TEXTES GÉNÉRAUX

MINISTÈRE DE L'AGRICULTURE ET DE L'ALIMENTATION

Arrêté du 13 juin 2017 approuvant un cahier des charges pour la mise sur le marché et l'utilisation de digestats de méthanisation agricoles en tant que matières fertilisantes

NOR: AGRG1617680A

Le ministre de l'agriculture et de l'alimentation,

Vu le règlement (CE) n° 1069/2009 du Parlement européen et du Conseil du 21 octobre 2009 modifié établissant des règles sanitaires applicables aux sous-produits animaux et produits dérivés non destinés à la consommation humaine et abrogeant le règlement (CE) n° 1774/2002;

Vu le règlement (UE) n° 142/2011 de la Commission du 25 février 2011 modifié portant application du règlement (EÜ n° 1069/2009 du Parlement européen et du Conseil établissant des règles sanitaires applicables aux sous-produits animaux et produits dérivés non destinés à la consommation humaine et portant application de la directive 97/78/CE du Conseil en ce qui concerne certains échantillons et articles exemptés des contrôles vétérinaires effectués aux frontières en vertu de cette directive;

Vu le règlement (UE) n° 2016/2031 du Parlement européen et du Conseil du 26 octobre 2016 relatif aux mesures de protection contre les organismes nuisibles aux végétaux, modifiant les règlements du Parlement européen et du Conseil (UE) n° 228/2013, (UE) n° 652/2014 et (UE) n° 1143/2014 et abrogeant les directives du Conseil 69/464/CEE, 74/647/CEE, 93/85/CEE, 98/57/CE, 2000/29/CE, 2006/91/CE et 2007/33/CE;

Vu la directive 91/676/CEE du Conseil du 12 décembre 1991 modifiée concernant la protection des eaux contre la pollution par les nitrates à partir de sources agricoles et ses textes nationaux d'application;

Vu la directive (UE) 2015/1535 du Parlement européen et du Conseil du 9 septembre 2015 prévoyant une procédure d'information dans le domaine des réglementations techniques et des règles relatives aux services de la société de l'information ainsi que la notification n° 2016/695/F;

Vu le code de la consommation, notamment son article L. 412-1;

Vu le code de l'environnement, notamment ses articles L. 511-1 et L. 511-2, L. 541-4-3 et R. 211-80;

Vu le code rural et de la pêche maritime, notamment ses articles L. 201-1, L. 255-5 et R. 255-29;

Vu le décret nº 80-478 du 16 juin 1980 modifié portant application de l'article L. 412-1 du code de la consommation en ce qui concerne les matières fertilisantes et les supports de culture ;

Vu l'arrêté du 10 novembre 2009 modifié relatif aux prescriptions générales applicables aux installations classées de méthanisation soumises à déclaration sous la rubrique 2781-1;

Vu l'arrêté du 10 novembre 2009 modifié fixant les règles techniques auxquelles doivent satisfaire les installations de méthanisation soumises à autorisation en application du titre l'' du livre V du code de l'environnement;

Vu l'arrêté du 12 août 2010 modifié relatif aux prescriptions générales applicables aux installations classées de méthanisation relevant du régime de l'enregistrement au titre de la rubrique n° 2781-1 de la nomenclature des installations classées pour la protection de l'environnement;

Vu l'avis 2016-SA-0152 du 26 octobre 2016 de l'Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail ;

Vu la mise à disposition du 30 janvier au 20 février 2017 du projet au public en vue de sa participation, conformément à l'article L. 123-19-1 du code de l'environnement,

Arrête

Art. 1". - Le cahier des charges référencé CDC DigAgri 1 figurant en annexe visant des digestats de méthanisation agricoles est approuvé, conformément à l'article R. 255-29 du code rural et de la pêche maritime.

Art. 2. – Le présent arrêté sera publié au Journal officiel de la République française et au Bulletin officiel du ministère de l'agriculture et de l'alimentation.

Digestats de méthanisation agricole reconnus comme fertilisants

>>> arrêté du 13 juin 2017

INRAe

Caractéristiques qualité agronomique sur 74 sites AAMF

Caractéristiques

MS sur MB

MO sur MS

C total g/kg MS

C/N total

C/N organique

Valeurs fertilisantes

- K₂O g/kg MS
- P_2O_5 g/kg MS
- N total g/kg MS
- NH₄ g/kg MS
- % NH₄ dans N total

Regroupement des intrants

96 types de matières premières: Effluents d'élevage, Résidus d'exploitation, Ensilages + CIVES, Matières végétales industrielles, Déchets autres

F: Fumiers

LR: lisier ruminants

LNR lisier non ruminants (porcs et autres)

9 catégories

V: matières végétales

R: résidus de cultures, ensilages

C: CIVEs

B: biodéchets

G: graisse

D: autres déchets

>

Etude digestats agricoles

Digestats bruts, phases liquides et solides

Potentiel fertilisant N, P, K

Engrais organiques riches en NH₄, K₂O,+ riches en N et plus pauvre en MS et MO

Digestats Liquides

Digestats Bruts

Amendements organiques C/N élevé, riches en MO et MS/MB plus élevé

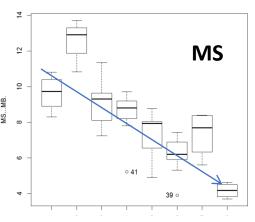
Digestats Solides

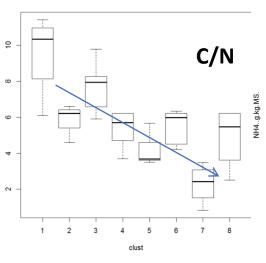
Potentiel amendant MO

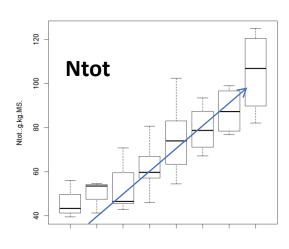
INRAe

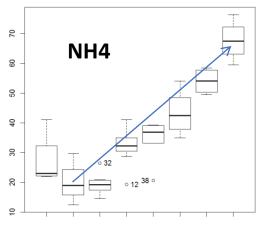
8 groupes

Classe	Intrants						
1	Fumiers+Vgtx						
2	Fumiers + Vgtx+ Lisier Rum.						

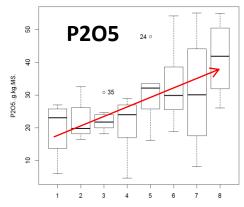

4 Lisier Ruminant

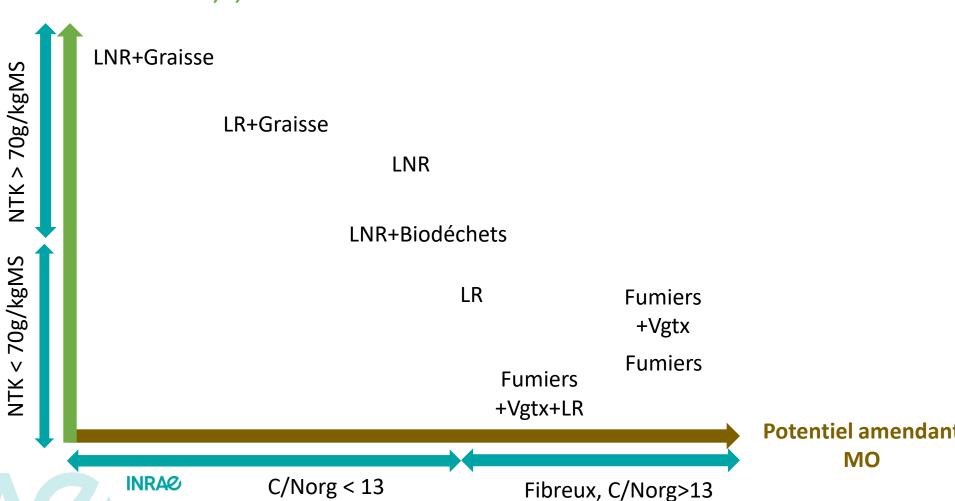



6 Lisier NR


7 Lisier Ruminant + Graisse

8 Lisier NR+ Graisse




- Effet fertilisant augmente de classe 1 à classe 8
- Effet amendant diminue mais moins clair (pas de classification sur les teneurs en MO)

INRAO

Digestats bruts

Potentiel fertilisant N, P, K

, 6, 11018, 13

p. 19

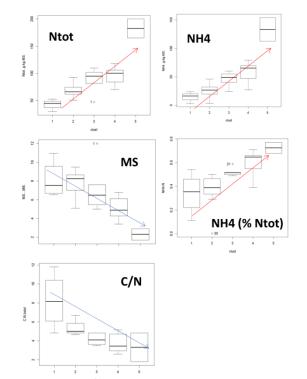
Digestats après séparation de phases

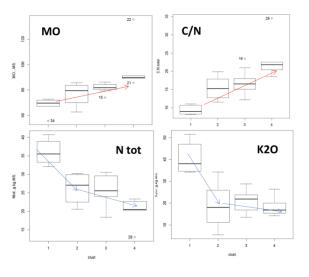
Digestats liquides

Classe Intrants

1 Fumiers

2 Lisier Ruminant

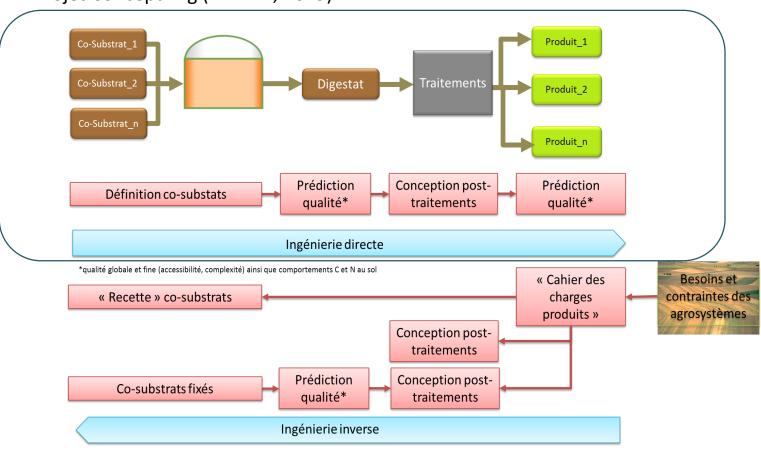

3 Lisier NR + Biod/autres D


4 Lisier NR

5 Lisier NR+ Graisse

Digestats solides

	Classe	intrants
	1	Voie Sèche: fumier
١	2	Lisier NR
	3	Lisier NR + Biod/autres D
	4	Lisier Ruminant
	5	Fumiers+Cives Vgtx



Amendant, fibreux

Utilisation de la typologie

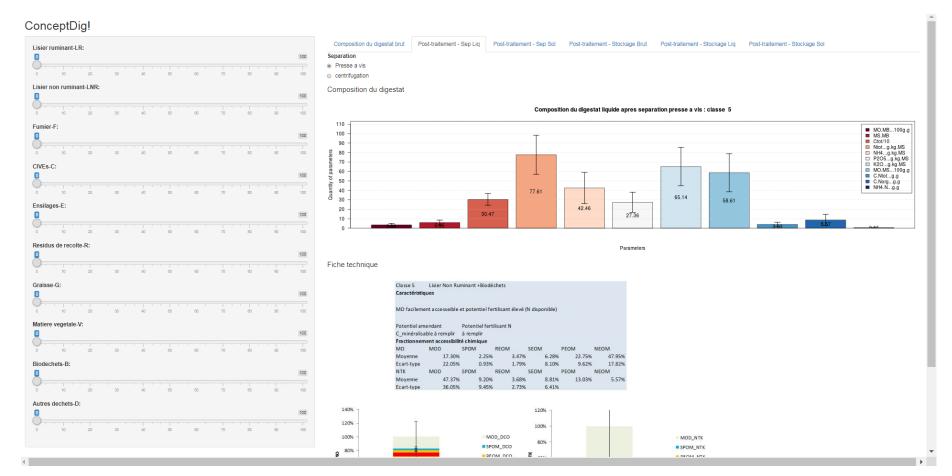
Développement d'un outil application web en cours de finalisation

Projet Concept-Dig (ADEME, 2019)

Utilisation de la typologie

Application web

Prédiction qualité digestat brut + qualité digestats post-traités (séparation de phases, stockage)



> Utilisation de la typologie

Application web

Prédiction qualité digestat brut + qualité digestats post-traités (séparation de phases, stockage)

> Utilisation de la typologie

Limites

Limites de la prédiction: gammes de rations en % de matière brute provenant de la base de données

	Lisier Ruminant		Fumier	CIVEs	Ensilages	Résidus de récolte		Végétaux	Biodéchets	Déchets Autres
Max ration (%Matière brute)	91%	83%	83%	55%	33%	28%	36%	48%	60%	54%

Si gamme plus élevée -> plus de données!

Manques: digestats de CIVEs!!!!

Conclusions et perspectives

- Typologie: discrimination par les co-substrats sur la qualité des digestats
- Prototype prédiction de la qualité agronomique des digestats en fonction de la ration des co-substrats
- Prototype prédiction de la qualité des digestats après post-traitements classiques
- Associer à chaque classe des caractéristiques agronomiques plus poussées: potentiel minéralisation C organique, N organique, risque volatilisation NH3, innocuité, écotoxicité, impact vie du sol
- Pour aller plus loin: projet Ferti-Dig déposé (APR GRAINE): bonnes pratiques d'utilisation des digestats selon la classe du digestat
- Pour aller encore plus loin: définir besoins des agro-systèmes selon territoire, région -> ingénierie reverse

